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Kinetics of Deformation

Body in equilibrium under the
action of a system of forces
(and/or moments)

External Internal
forces
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Kinetics of Deformation

Body in equilibrium under the
action of a system of forces

(and/or moments)




At any section - internal forces
represent the effect of one side
on the other, and are in

equilibrium with the external
forces on the side considered

AF is the force acting on the
area AA.

A?n and AF, are normal and___
tangential components of AF.

Kinetics of Deformation

Internal forces are developed within the body.




Concept of Stress at a Point

Normal and Tangential Stress Vectors

Stress vector at a point p,
associated with the section a-a,
is defined as:

c =i

AA -

o




Concept of Stress at a Point

Normal and Tangential Stress Vectors
Normal and tangential (shear)
stress vectors at point p,
associated with section a-a,
are defined as:

Gn IA!—)O AA

0-5_ AA —> 0 AA

A cubiod with side lengths o a—
dx, dy, dz is constructed at 1
the point

Positive faces are defined
as those for which the
outward normals are in the
direction of the positive
coordinate axes.




negative postive
faces faces

S¥N1Convenﬁonfor
Stress Components

Positive normal stresses are tensile

pastive

GXX ’ ny ) GZZ
Positive shear stresses on
the positive faces are in the

positive coordinate
irection
(Txy o b (Tyx ’ Tyz, ATz Tzy
On the negative faces, d il
positive shear stresses are he

in the negative coordinate
directions.




Stress Matrix at a Point

Stress Matrix ——

Stress
on Plane
Oxx Txy Txz |[—x
=y
—2Z

[G] =| Tyx Oyy Tyz

Tzx Yzy Oz
Stress | | ‘

Components X y 4
in Direction

Symmetry of Stress Matrix

Summation of moments about
X, Yy, z leads to:

> My = 0
[ty dx dz) dy =(c, dx dy)dz =0
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Stress Matrix at a Point

Symmetry of Stress Matrix

Summation of moments about
X, y, z leads to:

]

x M, = 0
[tz dy dz) dx— (o5 dx dy| dz = 0

(P

ZX

Symmetry of Stress Matrix

Summation of moments about
X, y. Z leads to:

]

XM, =0
(Txy dy dz) dx—‘ryx dx dz) dy=0

xy — Tyx




Stress Vector on an Oblaquc
Plane

Il [ Tax Cay Tz ||
2z Tzx Tzy Ozz k
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are unit vectors in x, y, z directions







Stress Vector on an Oblique
Plane

Stress Vector on an ()blique
Plane




Stress Vector on an Oblique

Plane

Equilibrium of Infinitesimal Tetrahedron
c'i*p dA -G, dAx—E'ry dAy—ﬁszz= 0

0
Gp =[Gy Gy S, || m
n

n=|0mn|
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Stress Vector on an Oblique
Plane




Stress Vector on an Oblique

Plane

- Plane P

Stress Vector on an Oblique
Plane

Oxx Tyx Tzx
G =] LN [ iy O Ry
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Stress Vector on an Obllquc

Plane

Shear Stress Component

o=

- Plane P

Effect of Transrormaction ofr.

Coordinates on Stress Components

New Coordinate System

-lb-h-

Unit vectorsi', j , k are in the direction of the
new coordinate x',y', z'.
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Given stresses Desired stresses

Effect of Transrormaction ofr.

Coordinates on Stress Components

Stress Vector on the plane x'

—

Z
Oz Z'
O, =

Yy x. (]’zl

y
Oy —

x - '(’yl
y

Ox

| | b
i




Effect of Transformation of
Coordinates on Stress Components

i
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Given strosses  Desired stresses

Effect of Transformation of.
Coordinates on Stress Components

Shear Stress Component
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Effect of Transformation of

Coordinates on Stress Components

Stress Components at a Point Referredtox',y'. z'
Coordinate Systems

G yx Ty'x' Ty Q1 m, N, O xx Tyx Tox Q1 Qz 93
Txtya Uyaya Tz’)‘" = Qz m2 nz tx}' ny sz m-| mz m3
Lo IY'Z' O, _ Q3 m3 n3 Ty ‘II]'.z O n, nz n3
or [o'| =[T][o] [T]

Given stresses Desired stresses

Special States of Stress

Three Dimensional
Principal Stresses Normal stresses acting on planes,
on which shearing stresses are zero z

Oz

o, « 0

_ XX
| (o) | = . Gﬂ' . =
0 . o,

X
Spherical, Volumetric or Dilatational Stresses

Equal principal stresses on the three coordinate planes

z
g
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Special States of Stress

Two-Dimensional (Plane Stresses)
All nonzero stress components are in two coordinate
directions only; example, stress state in plane xy

Oxx Txy

0

Oyy
ty x

xy =Tyx
(Jxx




Special States of Stress

Two-Dimensional (Plane Stresses)

Pure Shear

All nonzero stress components are shear stresses in
one plane (e.qg., x-y plane)

yT 0::“'
0 t 0 WEL' =T
Xy 5 xy = Tyx
(o] = T 0 0 .:j-F’G“
000 Tl X
™Yoy,

Uniaxial Stress
Only the normal stress component in one direction is
nonzero

Oxx gy g F




Principal Planes, Principal SIresses

and Principal DIrections

Principal planes are X
planes on which the shear principal
directions

stresses vanish.

Principal stresses are

normal stresses acting on
principal planes.

Principal directions are
the directions of principal

stresses (mutually
orthogonal). principal planes




principal
directions

ol

o! oll

principal planes

Principal Planes, Principal Stresses

and Principal Directions

Determination of principal stresses

Le:,_fr p be a principal plane whose unit outward normal
is n.

n=/¢mn|

ri S| —




Principal Planes, Principal Stresses
and Principal Directions

Gp =GN =[Oy Opy Opy|

xl R | -]

where G = magnitude of principal
stress on the principal plane p.

Opx - Opy - Opz are the projections of
(_T; on the coordinate directions, and

are given by: O { 0 }
-0

(4] m
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n

g




principal
plane

Principal Planes, Principal Stresses

and Principal Directions
where G = magnitude of principal
stress on the principal plane p.

Opx » Opy - Opz are the projections of

C_I; on the coordinate directions, and
are given by:

is used then




Principal Planes, Principal Stresses

and Principal Directions

If the relationship:

is used then

Do T a0h

Principal Planes, Principal Stresses
and Principal Directions

Oxx Tyx Tzx (| ¢ 0
Txy Oyy Tzy [|[M|=0C|M
| Txz Tyz Oz L n
or
Oxx~0 Tyx Tzx )
Txyy Oy O Ty |[M]|=0
Tz Tyz OpO i




negative postive
faces

Principal Planes, Principal Stresses
and Principal Directions

Oxx Tyx Tzx (| ¢ 0
Tyy Oyy Tzy |[|[M|=0C (M
Txz Tyz Oz L L
or
Oxx~0 Tyx Tzx )
Txyy Oy O Ty |[M]|=0
Tz Tyz OpO i

Three linear homogeneous simultaneous algebraic
equationsin /, m,n - which is an algebraic
eigenvalue problem.




2+ m?+n°=1

Therefore, the trivial solution
¢/ =m=n=0is not possible.

and

det. Txy Oy O Tzy

or, expanding the determinant

Principal Planes, Principal Stresses
and Principal Directions

Principal Planes, Principal Stresses

and Principal Directions

det. Tyy Oy O Tzy

Txz Tyz 0z70

or, expanding the determinant




Principal Planes, Principal Stresses

and Principal Directions

I = Oxx Tyx i Oxx Tzx i Oyy Tzy
5=
Txy Oyy Tz Oz Tyz Ozz

Oxx Tyx Tzx
y {fﬂi.mlll’nlll)
p clll

I3 = Tyxy Oyy Tzy
T

xz Yyz Ozz

* The quantities I, L, I, do not change &
with coordinate transformations.
They are called stress invariants.

Principal Planes, Principal Stresses

and Principal Directions

* The quantities |, L, L, do not change
with coordinate transformations.
They are called stress invariants.

* The three roots of the cubic equation
are the magnitudes of the principal

stresses ', ! ol (€, m", )

ol

Tpe G, =0
principal

ol gl

(,c-l1 m', nl) (fl}.,u' ﬂu)




Principal Planes, Principal Stresses

and Principal Directions

* The three princif)al directions are obtained by
successively rep

acing © in the eigenvalue problem
by 6'.6 "and 6", and using the relationship
C+m?+n®=1.

({.-Jn‘ rn"'1 n'")
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Maximum Shear Stresses

Maximum shear stresses occur on the planes
bisecting the angles between the principal planes.

If the principal stresses ¢!, ¢!l , ¢lll arein the

direction of the x, y, z axes, the planes of maximum
shear stresses are such that:

el il el
(|t | 0 | *3
m| 75 t 0

Tum=*5 [(c"-c")




The magnltude of normal stresses actlng on the
same planes are:

7 (c'+c")

< (c"+c")

< (6"+c")

Octahedral Planes and
Octahedral Stresses

Octahedral planes

are planes which are equally
inclined to the principal planes
The direction cosines of the
normals to these planes
(relative to the principal axes)

are given by:

l=m=n=+

sl
V3




Octahedral Planes and
Octahedral Stresses

Octahedral stresses

are normal and shear
stresses acting on the
octahedral planes

Cou =5 (c'+ "+ oM

W= W=

l4

ngct. = (6! = o) + (6! = 6"M)? + (6 - 6!)?

=212-61,




Decomposition of Stress Matrix into
Volumetric and Deviatoric @nes

|
Oxx Tyx Tzx gt y: 5
Txz TYZ Ozz TIZ Ty.z GZZ_% |1

Decomposition of Stress Matrix into
Volumetric and Deviatoric @nes

where

Iy = [Gxx t oyt Gzz)

= (o' + o' + o)

Deviatoric stress components
are associated with change in
shape.

Volumetric (dilatational)
stress components are
associated with change in
volume.




negative postive
faces

Stresses at
Neighboring Points

Point Q is at a distance Q (x+dx,

dx,dy,dzinthex,y, z
directions from point P.

The stress components
acting on plane x = const.
at point Q are related to
those on the parallel
plane at point P as
follows:




Stresses at

Neighboring Points

Point Q is at a distance Q (x+dx,

dx, dy,dzinthe x, y, z
directions from point P.

The stress components

G xx O xx P G xx >y
txz Q sz P TXZ P ]
g g™
Toy Ty Yo Ty G2 eh,
XZ P XZ P

Txx oy Oxy

Differential Equations of

Motion of a Deformable Body

* Consider an infinitesimal element of extent
dx, dy, dz in the X, y, z coordinate directions.

« Stress components on the negative faces are:

Tax

Gz

v

Ugr







Differential Equations of

Motion of a Deformable Body

Stress components on the positive
faces are:

O xx P O xx

Xz Xz
y T

yX P yX
o + 2~ /C d

vy ) oW Y
Tyz yz

+ O

T2y 5z \ Tzy dz
G2z G2z

Uxx +ID.




Differential Equations of

Motion of a Deformable Body

« Mass of element = pdx dy dz
p = mass density FY:

« Acceleration in x direction -

ou
ot?
« Summing the forces in the x direction

(0'“ + Eﬂ—x"‘ dx) dy dz - c,, dy dz

; -
2 ﬁé
+ (r,,-!- = dy] dxdz -t , dx dz

oy

01,
+ (ru+ = dz) dx dy — t,, dx dy

o%u
atz

=pdxdydz

Differential Equations of
Motion of a Deformable Body

* Mass of element = pdx dy dz
p = mass density %4

« Acceleration in x direction - ot

« Summing the forces in the x direction

or

0C y OTyy
ofo

OX oy




Differential Equations, of

Motion of a Deformable Boady

* Summation of forces in the y and z
directions leads to:

Mohr's Circle Representation

Transformation of Stress Components
Two-Dimensional State of Stress

[o]=[T]*[o] [T]

Ux!xf Txavf

where [0’]: T T

[U]: Oxx Txy
Tyx Oyy

_Ycuse —sino
[T]_ sin@ cos?




Mohr's Circle Representation

Transformation of Stress Components

Ux!xf -l:va!

Tvrxr chy;

o] =| 2% &
Tyx Ow

_| cosO -sinO
[T]_ sind0 cos0

Sign Convention

Positive Negative

Positive normal o o

stresses are tensile

Positive shear @L’ n @T/’ n
»

stress clockwise -




Mohr's Circle Representation

Location of Pole
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Mohr's Circle Representation

Stresses on any Inclined Plane @L;Ux'x'




